Limits

Consider the graph:

Limit Notation & Description

Suppose that f is a function defined on some open interval containing the number a. The function f may or may not be defined at a. The limit notation

$$\lim_{x \to a} f(x) = L$$

is read "the limit of f(x) as x approaches a equals the number L." This means that as x gets closer to a, but remains unequal to a, the corresponding values of f(x) get closer to L.

$$\lim_{x\to 0^{-}} \left(\frac{1}{x}\right) = -\infty \quad \text{and} \quad \lim_{x\to 0^{+}} \left(\frac{1}{x}\right) = \infty$$

$$\lim_{x\to 0} \left(\frac{1}{x}\right) = \frac{\text{does}}{\text{not}}$$

$$\frac{x^3 - 1}{x - 1}$$

1.
$$\lim_{x \to 5^{+}} f(x) = -\infty$$

$$\lim_{x \to 5^{-}} f(x) = \mathcal{A}$$

$$\lim_{x \to 5^{-}} f(x) = 0$$

$$\lim_{x \to 5} f(x) = 0$$

2.
$$\lim_{x \to -7} f(x) = -4$$

3.
$$\lim_{x \to -3} f(x) = -4$$

$$4. \lim_{x\to 0} f(x) = \emptyset$$

Table:

$$\frac{x^2-1}{x-1}$$

×	$\frac{(x^2-1)}{(x-1)}$
0.5	1.50000
0.9	1.90000
0.99	1.99000
0.999	1.99900
0.9999	1.99990
0.99999	1.99999

$\frac{(x^2-1)}{(x-1)}$
2.50000
2.10000
2.01000
2.00100
2.00010
2.00001

Limit of a Constant

The limit of a constant is that constant. For the constant function f(x) = c, $\lim_{x \to a} c = c$

Examples:

$$\lim_{x\to 4} 7 = \mathbf{7}$$

$$\lim_{x \to 0} (-5) = -5$$

Limit of a Polynomial

$$\lim_{x \to a} f(x) = f(a)$$

Examples:

Finding Limits When the Limit of the Denominator is Zero

Using Factoring:

$$\lim_{x\to 3} \frac{x^2 - x - 6}{x} = 5$$

$$\int_{x\to 3} \frac{x^2 - x - 6}{x}$$

$$\lim_{x \to 1} \frac{x^2 - 2x - 3}{x - 1}$$

More with Factoring

$$\lim_{x \to -5} \frac{x^2 + x - 20}{x^2 + 2x - 15}$$

Going to Infinity

Consider horizontal asymptotes.

$$\lim_{x\to\infty}\frac{1}{x}:0 \text{ HA } y=0$$

$$\lim_{x \to \infty} \frac{2x^2 - 3}{x^2 + 2} = 2$$

Limits Don't exist when:

- 1. The limit from the left and right are not equal
- 2. Unbounded behavior

3. Oscillating behavior

